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Introduction

* Per JPL 30 years of experience, Modal Mass Acceleration Curve (MMAC)
approach bounds Coupled Loads Analyses (CLA) results while not being overly
conservative. However, most spacecraft industries use sine loading.

— JPL Past Projects supported by MMAC:

* Galileo (1989), SIR-C (1994), Cassini (1997), Deep Space 1 (1998), SRTM (2000),
MER (2003), MSL (2011),SMAP (2015)

— JPL On-going Projects supported by MMAC:
* M2020 (2020), Europa (2020s), NISAR (2020)

* The purpose of this study is to compare the MMAC and sine analyses results,
against CLA results.

— Per this study, sine analysis results have shown deficiencies in comparison to CLA
however, MMAC analysis results have been bounding
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Background

MMAC Analysis
* Successfully implemented at JPL over the past M| | Mo M, &
30 years for spacecraft launch loads for all JPL
missions. wé&‘f wélﬁjg wé&'f
* |nnovative extension of the PMAC loads Launch Vehicle Interface
analysis method to modal models of spacecraft
structure. Gonb0 | M 8000

102

* MMAC is based on the principle that the
acceleration response of a base driven system
IS inversely proportional to the square root of
mass.

* Each mode is treated as a single DOF system
fixed at Spacecraft to LV interface with some
effective mass

* MMA-Curve bounds the magnitude of the
modal accelerations as a function of effective
mass of each mode
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Background

* MMAC Advantages
— Quick turnaround:
* Load analysis for a payload are done in few days
— Large output request:
* Possible to output loads for the entire payload model
— Launch Vehicle Models
* Launch vehicle models and forcing functions are not required

®* Considerations
— Bounding Loads:

* Provides bounding loads for the low frequency launch dynamic
environments (<100 Hz) — not a simulation

— Not intended to replace the CLA
* Intended to support structural design between CLA cycles
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Mission

* Joint project between JPL and an international
partner

* Sine analysis are required for estimating the low
frequency launch loads

* Mission type: Earth orbiting Satellite

* Mass: ~ 2000 kg
* Launch Vehicle
— Space X Falcon 9

* This study uses Hurty/Craig-Bampton model of
the spacecraft (CLA model)
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MMAC Analysis

* Inputs

Accelration Bound Estimate
— FEM of Payload:

* To get the constraint modes, inertia 1%()|=
relief modes , fixed-base normal 6 6 n
modes = Y Igemamean| £ |y (¢mEP™) 4 Y (gpm mE glmacy?
— Payload to Launch Vehicle Interface
Accelerations: X" = P/Lto L/V interface accel. (mean)
* Dynamic and mean components K Z ol 1o LV intert L _
= to Interrace accel. namic
* Tuned to bound the CG load factors ' (dy )
msﬁ = Effective mass, square-rooted
— Modal Mass Acceleration Curve: . MMAC _
g, = Modal Mass Acceleration

* CLA results from the current project
or previous projects with similar
configurations and launch vehicle
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MMAC Analysis

Parameters
MMAC - Lateral MMAC - Axial
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Sine Analysis
Summary

* SpaceX Falcon 9 Version 1.1
* 2% Damping
* Sine Environment

— Planner’s guide

* Force limiting

— CG Load Factors (higher of the CLA and
the value given in the planner’s guide)

— 2.5 g for the lateral case
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CLA Analysis

* Early Coupled Loads Analysis
— Falcon 9, Version 1.1
— 1% Damping
— Frequency Range: f <100 Hz
— Only acceleration results available
— Standard suite of Falcon 9 CLA events
— Dynamic Uncertainty Factor: 1.5
— Static Uncertainty Factor: 1.0

Ramses.Mourhatch@jpl.nasa.gov 10
Mechanical Systems Engineering, Fabrication and Test Division (Div. 35)



CLA Coverage

Sine vs MMAC
Sine vs CLA MMAC vs CLA
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* Sine results are deficient by 68.7% in the lateral case, 7% in the axial case,
and 25.4 in the overall maximum case

* MMAC provides full coverage for all three cases without excessive
conservatism
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CLA Coverage
Sine vs MMAC
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* Deficiencies are observed across the entire range of acceleration values
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Conclusions

* Sine analysis showed notable deficiency when compared against the CLA
accelerations in this example

— Sine environment is not representative of the actual flight environment and may be the source of the
deficiencies

* Sine waveform is not representative of the actual acceleration time histories at the SC to LV
interface

* Sine is driven in only one DOF; actual flight environment drives all six DOFs simultaneously
* Sine primarily drives a single mode; actual flight environment drives multiple modes at once

* Sine capture only the dynamic component of interface acceleration; it does not capture the
steady-state acceleration.

— For design purposes the higher result from the two analyses (CLA and sine analysis)
should be used

* MMAC provided a full coverage of the CLA results and does not have the
shortcoming identified with the sine environment
— MMAC analyses is more representative of the flight environment than sine

* Future Work
— Comparison of loads data in addition to the accelerations
— Data comparison from other missions: SMAP, M2020, ...
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MMAC Analysis

Equation
MMAC - Lateral
5 Go=1.7 | M=5000
10 . — —
Go =
MMAC(m) = etan(a)
> m 2
.g \/ﬁ+(‘§sc+§lv)
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MMAC Analysis

Summery

Max Lateral
[ vean | oyemic
Tx 0.0 1.5
Ty 0.0 1.5
Tz 2.0 0.25
RX 0.0 0.0
Ry 0.0 0.0
Rz 0.0 0.0

G, = 1.7
S, = 5000 Ibf
Fact = 1.0
F = 100 Hz

max

Damping = 1%
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Max Axial
e | namic
Tx 0.0 0.0
Ty 0.0 0.0
Tz 5.0 0.8
Rx 0.0 0.0
Ry 0.0 0.0
Rz 0.0 0.0

G, = 0.9
S, = 9000 Ibf
Fact = 1.0
F = 100 Hz

max

Damping = 1%




Interface Equivalent Sines from CLA Analysis
Compared with Sine Input Levels
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* Sine input levels cover the equivalent sines from CLA analysis
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CLA Coverage

Sine vs MMAC
Sine vs CLA
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